
Unit 2. Programming 
Fundamentals

2.1 Computer Solving Problem Phases
2.2 What is an algorithm?
2.3 Algorithms representations
2.4 Algorithms design method
2.5 Algorithms elements 



Computer Problem Solving

n Algorithm development phase
q Analyze: Understand the problem
q Design an algorithm
q Test the algorithm

n Implementation phase
q Code: translate into a programming language
q Test the program

n Maintenance phase
q Maintain: Adapt to new requirements

D
O
C
U
M
E
N
T
A
T
I 
O
N



What is an algorithm?

n R.A.E.: “And ordered and finite set of 
operations which allows finding the solution 
of a problem”

n We use different algorithms everyday:
q Recipies
q D.I.Y. Furniture
q Explain to somebody how to go somewhere
q Drive a car



What is an algorithm?

n An algorithm is set of instructions for solving 
a problem or subproblem in a finite amount of 
time using a finite amount of data

n Properties of an Algorithm:
q It must be precise and unambiguous
q It must give the correct solution in all cases
q It must eventually end



What is an algorithm?

n Is this Spanish Omelet recipe an algorithm?

Cut up the potatoes into cubes a half centimeter in diameter. Fry 
them using plenty of oil on a low flame. Add onions and fry until 
transparent. Put the mixture into a separate bowl and set aside to 
cool. Beat the eggs in a bowl, add some salt and mix well with the 
potatoes and the onions. Put the mixture in the frying pan again with 
some more oil. Wait until it sets, turn it upside down and let it set 
again over a low flame, making sure not to burn it.



Algorithms representations

n Algorithms can be described using
q Natural language
q Flowcharts
q Pseudocode
q Programming Languages



Algorithms representations

n Natural Language:

q Simple
q Too verbose
q Too "context-sensitive"-

relies on experience of 
reader

q Error prone

Add the first score to the second 
one and divide the total by two. 
The student passes the exam 
when the result is greater than 5



Algorithms representations
n Flowchart: combines symbols and 

flowlines, to show figuratively the operations 
of an algorithm

q More close to a computer 
representation 

q Algorithms can be described 
using a few symbols

q Non intuitive symbols
q Text is natural language
q Large algorithms can be difficult 

to represent

Get first
testscore

Start

Add first testscore to
finalscore

Add second testscore
to finalscore

Divide finalscore by
2

Get second
testscore

Print ‘Student 
passed the 

course’

finalscore = 0

End

Print ‘Student 
didn’t pass the 

course’

Finalscore >= 5 ?



Algorithms representations

Write ‘Introduce the first score’
Read score1
Write ‘Introduce the second score’
Read score2
sum = score1 + score2
result = sum / 2
If result is greater than 5

Write “Student passed the course”
else

Write “Student didn’t pass the 
course”

End if

n Pseudocode: Natural 
language constructs 
modeled to look like 
statements available in 
many programming 
languages

q Comprenhensible as natural 
language but unamiguous

q Independent from the
computer



Algorithms representations

n Programming language:
a set of pre-defined words that can 
be combined into statements that a 
computer can understand and 
execute

q Comprenhensible both to human 
and to computers

q Algorithms described in diffferent 
lenguages will look different

Score1=input(“Introduce the first 
score?\n”);
Score2=input(“Introduce the first 
score?\n”);
sum = score1 + score2;
result = sum / 2;
if (result>5)

Sprintf(‘Student passed the course’);
Else 

Sprintf(‘Student passed the course’);
End if



Algorithm development phase

n Algorithm development phase
q First step: Understand the problem
q Second step: Design an algorithm



First Step: Understand the problem

n What do I know about the problem?
n What is the information that should be procesed to find 

the solution?
n What does the solution look like?
n Identify input information and output information. 

q Problem example: Find first non repeated character in a 
sentence
This could be an example of input and output information for this 
problem:

Input sentence: The cat is in the kitchen 
Algorithm output: 



Second Step: Design the Algorithm

n Three sub-steps:
1. Devise a plan: General cases and Special cases

2. Test the plan for different inputs (trace)
3. Refine the solution

n Identify similarities and patterns
n Make the solution more general
n Consider algorithm efficiency
n Is there any alternative?



Second Step: Design the Algorithm

1. Devise a plan:
q Some techniques to approach the design of the 

algorithm
n Look for related problems already solved (pattern matching)
n Working backwards (reverse engineer)
n Divide and conquer



Second Step: Design the Algorithm

n “Divide and conquer” method:
n Divide the problem into one or more sub-problems
n Conquer subproblems by solving them recursively

§ If the problem is simple enough solve it directly
n As a result a hierarchical structure of problems and 

subproblems is obtained
n The solutions of the subproblems can then be 

combined to solve the original problem



Second Step: Design the Algorithm

n “Divide and conquer” method:
Problem

Subproblem 1 Subproblem 2 Subproblem 3

Subproblem
1.1

Subproblem
1.2

Solution 2 Solution 3
Solution 1.1 Solution 1.2

Solution



Second Step: Design the Algorithm

n Advantages of the “Divide and conquer” method:

q Smaller problems are easier to comprehend. 
q Solutions to smaller problems are easier to test.
q Sub-solutions tend to be simpler than when 

considered as a whole.
q Different designers can work in different parts of the 

problem in parallel
q The program will be easier to maintain
q Reuse of sub-solutions for other problems 



Algorithm Design

n Exercise: Design an algorithm for planning a 
birthday party 



Algorithm Design

n Exercise: Design an algorithm for planning a 
birthday party 

q Understand the problem



Algorithm Design

n Exercise: Design an algorithm for planning a 
birthday party 

q Divide the problem:



Second Step: Design the Algorithm

2. Test the plan for different inputs (trace):
q Consider general cases and special cases

§ Problem example: Find first non repeated character in a 
sentence
Example of an special case for the previous problem:

Input sentence: 
Algorithm output: 



Second Step: Design the Algorithm

2. Test the plan for different inputs (trace):
q Consider general cases and special cases

§ Problem example: Find first non repeated character in a 
sentence
Example of an special case for the previous problem:

Input sentence: blablabla
Algorithm output: none



Algorithm Design

3. Refinement:
q Identify similarities and patterns
q Make the solution more general
q Consider algorithm efficiency

n Is there any alternative?



Problem Solving Exercises

n Problem: Try to guess a number in the 
minimum amount of tries
q I can only tell you if you are right, too high or too 

low
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Problem Solving Exercises

n Design an algorithm for obtaining the average 
value given a list of numbers

n Design an algorithm for an ATM: the user will 
introduce the amount required and the 
machine will only dispense notes in 
denominations of 50, 20 and 10 euros.



Algorithm Design

n Exercise: “Given a list of numbers find the 
average value”



Problem Solving Exercises

n Design an algorithm for an ATM: the user will 
introduce the amount required and the 
machine will only dispense notes in 
denominations of 50, 20 and 10 euros.
q The ATM only allows quantities in multiples of 10
q The ATM only allows quantities greater than 10



Problem Solving Exercises

n Game:
q https://www.brainpop.com/games/blocklymaze/
q You have to tell the man how to reach the goal by 

putting in the right order the different blocks/lego 
pieces

https://www.brainpop.com/games/blocklymaze/

